منابع مشابه
Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems
Tensor decompositions and tensor networks are emerging and promising tools for data analysis and data mining. In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors...
متن کاملOptimization problems in contracted tensor networks
We discuss the calculus of variations in tensor representations with a special focus on tensor networks and apply it to functionals of practical interest. The survey provides all necessary ingredients for applying minimization methods in a general setting. The important cases of target functionals which are linear and quadratic with respect to the tensor product are discussed, and combinations ...
متن کاملEvaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation
Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملTensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions
Machine learning and data mining algorithms are becoming increasingly important in analyzing large volume, multi-relational and multi– modal datasets, which are often conveniently represented as multiway arrays or tensors. It is therefore timely and valuable for the multidisciplinary research community to review tensor decompositions and tensor networks as emerging tools for large-scale data an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015